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Cancer is a complex and heterogeneous disease.
Despite all efforts to fight cancer, it continues to
impact every segment of society. For example,
many patients fail conventional cancer therapies,
including chemotherapy, radiation, and surgery;
and it is still difficult for physicians to predict a
treatment outcome with certainty. Indeed, cancer
treatment efficacy depends on the concentration
of the drug that reaches the tumor and the partic-
ular effectiveness of the drug against the tumor.
Once drugs are delivered into the blood stream,
they encounter diffusion barriers, which are
physiological obstructions that prevent drugs
from reaching the tumor. If adequate amounts 
of drug reached the tumor mass, the goal of suc-
cessfully delivering chemotherapy to kill enough
cells to shrink or eradicate a tumor would likely
be realized. We thus hypothesize that if drugs can
be delivered to the site of the tumor in sufficient
concentration (e.g., through nanoparticles that
can temporarily stay in the tumor vasculature),

then the drugs should perform as expected, as is
the case in monolayers where diffusion barriers
do not exist. Here, we introduce and discuss a
combined mathematical modeling and experi-
mental approach to understand drug delivery
and predict chemotherapeutic outcomes based
on physical parameters. 

Physical transport barriers in cancer
treatment

In treating cancer with different forms of thera-
pies based on drugs, including chemotherapy,
targeted therapy, as well as immunotherapy, a
critical problem that oncologists face is the dis-
similar results of tests performed in laboratories
on monolayers of cancer cells in petri dishes
versus treatments performed in live patients or
on laboratory animals. Various cancer-fighting
drugs exhibit highly effective results when deliv-
ered to monolayers, but they underperform in
vivo as well as in patients. We believe accurately
describing and modeling drug transport across
diffusion barriers will lead to breakthroughs for
chemotherapy, even on so-called resistant cell
lines, which show far less resistance when 
diffusions barriers are minimized. 

e physical properties of a tumor’s microenvi-
ronment influence a drug’s ability to penetrate
and kill tumor cells. Some of these properties can
be potential obstructions to drug diffusion, in-
creasing the tumor’s resistance to chemotherapy.
As previously reported, these barriers include
overexpression of protein efflux pumps, cell
growth cycles, acidosis, hypoxia, tissue density,
high interstitial fluid pressure, and electrostatic
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charge. We argue that diffusion barriers may be
another main cause for a tumor’s ability to be
drug resistant, and while all of the above factors
contribute to resistance, the drug’s primary chal-
lenge is reaching the tumor microenvironment.
us, diffusion barriers are our primary target 
in understanding why drugs prove less effective
in patients. Whether a drug can be ultimately 
delivered to the tumor, past the diffusion barriers,
depends primarily on the vasculature in the 
surrounding area and its influence in creating a
static environment that prevents perfusion of
blood. In particular, it has been hypothesized 
and experimentally proven that tumor kill would
be significantly enhanced through the elution of
drug from a nanoparticle that deposits in the
tumor (Ferrari, Trends Biotechnol 2010,
PMC2843761). 

“Cancer is a complex and heteroge-
neous disease. Despite all efforts to
fight cancer, it continues to impact
every segment of society. For example,
many patients fail conventional cancer
therapies, including chemotherapy, 
radiation, and surgery; and it is still
difficult for physicians to predict a
treatment outcome with certainty.”

We developed a mathematical model that 
accounts for both spatial and temporal hetero-
geneities of drug dosing to help explain, examine,
and prove the concept of using nanoparticles as
the drug delivery method for enhancing treat-
ment efficacy. is integrated mathematical
modeling and experimental work lays the
groundwork for further human clinical studies,
as well as further research into the contribution
of other factors in the microenvironment on
drug resistance. 

Development of a spatio-temporal
mathematical model

We extended a previously developed time-de-
pendent drug-cell interaction model (Pascal et

al., ACS Nano 2013, PMC3891887) by incorpo-
rating spatial dependence to describe perfusion
and diffusion heterogeneities. e governing
equations for drug concentration σ(x, t) and the
volume fraction of tumor cells φ(x, t) are 

— = D 2σ – λuφσ, (1)

— = –λuλkφ(x, t)∫0
t σ(x, τ)φ(x, τ)dτ, (2)

where D is the diffusivity of the drug, λu the
per-volume cellular uptake rate of drug, and λk
the death rate of tumor cells per unit cumulative
drug concentration. Because drug diffusion
time and the plasma half-life of drug are both
much shorter than the time scale for cell death
(on the order of minutes vs. hours or days), 
and also because the model will be examined
on time scales of days to weeks, rather than 
minutes, Eq. 1 can be solved at the steady state,
i.e., ∂σ / ∂t =~ 0 . Note that this is actually a
quasi-steady state, meaning that σ(x, t) quickly
relaxes to the instant steady state defined by
φ(x, t)). us, without the time derivative in 
Eq. 1, the solution σ(x, t) is independent of initial
conditions. For boundary conditions, we set a
drug concentration σ0 at the blood vessel wall. 

We further assumed that a drug administered as
bolus at a certain dose level has the same effect
as the same total amount of drug administered
over several months at a constant, smaller dose
level; see our prior work (Pascal et al., Proc Natl
Acad Sci U S A 2013, PMC3761643; Koay et al.,
J Clin Invest 2014, PMC3973100) for validation
of this assumption (with patient data) on the use
of a constant boundary condition. Accordingly,
for a cylindrically symmetric domain surrounding
a blood vessel, the boundary conditions can be
set to 

σ(r = rb ,t) = σ0 , and (3)
n. σ|x→∞ →0, (4)

where r denotes the radial position from the
center of the cylinder, and rb represents the
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blood vessel radius; the second boundary con-
dition reflects that the far-field drug concentra-
tion flattens out. Furthermore, Eq. 2 has no
spatial derivatives, and thus only requires the
initial conditions for φ(x, t), which we set to 

φ(x, t = 0) = φ0, (5)

i.e., a homogeneous initial tumor volume 
fraction. As detailed below, this model allows
us to examine drug release through loaded
nanoparticles where drugs are released at a
nearly constant rate over a certain time interval,
approximated here by a constant σ0. 

Prediction of treatment outcome for 
time-course measurements

Histology data are not always available for 
determining parameter values for the models

presented in (Pascal et al., Proc Natl Acad Sci U
S A 2013, PMC3761643; Koay et al., J Clin Invest
2014, PMC3973100). us, we derived an alter-
native form of treatment outcome (denoted by
fkill) as a function of another set of experimental
parameters, the values of which can be obtained
from in vivo cytotocixity experiments. e
reader may refer to (Wang et al., PLoS Comput
Biol 2016, PMC4902302) for further details on
model derivation. e final mathematical for-
mula for calculating the amount of fkill through
the delivery method of loaded nanoparticles is
as follows: 

ƒkill = ———t2. (6)

Note that there is a quadratic increase in fkill
with time, which is consistent as previously 
observed in vitro (Pascal et al., ACS Nano 2013,
PMC3891887). 

Figure 1. Measurements of tumor volume. Four treatment groups: PBS (control), free doxorubicin, 1.0 µm
porous silicon particle loaded with chemotherapy drug (iNPG/pDox 1.0), and 2.6 µm porous silicon particle
loaded with chemotherapy drug (iNPG/pDox 2.6). Data were measured on days 0, 3, 7, 11, 14, and 17 aer first
treatment. Figure reproduced from (Wang et al., PLoS Comput Biol 2016, PMC4902302). 
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Experimental validation of model
predictions

We validated our model results with a set of 
published cytotoxicity experimental data on
comparison of free and nano-particle-based drug
delivery in vivo (Xu et al., Nat Biotechnol 2016,
PMID: 26974511). In this experiment, mice were
randomly placed into four groups (10 mice per
group) and administered intravenously beginning
on day 14 according to a predefined protocol.
e four groups were: i) control: phosphate
buffered saline (PBS), administered twice a week;
ii) free doxorubicin (3 mg/kg, i.v.), administered
twice a week; iii) 1.0 µm porous silicon particle
loaded with chemotherapy drug (iNPG/pDox
1.0, 6 mg/kg, i.v.) (Xu et al., Nat Biotechnol 2016,
PMID: 26974511), administered once a week;
and iv) 2.6 µm porous silicon particle loaded
with chemotherapy drug (iNPG/pDox 2.6, 6
mg/kg, i.v.), administered once a week. Tumor
volume was measured for each mouse on days
14, 17, 21, 25, 28, and 31 aer tumor cell injec-
tion (see Fig. 1). Mice were sacrificed on day 31,
and tumors were removed. For comparison with
model predictions (i.e., Eq. 6), the tumor volume
measurements were normalized across the four
treatment groups to the measurements from the
PBS control group and to the initial tumor vol-
ume, and for each tumor, fkill was calculated as 1
minus the normalized tumor volume. 

From the time-evolution of fkill for the three
groups of BALB/c mice (Fig. 2), it is evident
that, aer roughly three days of first treatment
with rapid growth, fkill remains approximately
constant until the end of the experiments 
( fkill = 0 at the onset of the treatment on day
zero). is rapid growth of the fraction of dead
cells is consistent with the quadratic time-de-
pendence predicted by model Eq. 6. e meas-
ured tumor kill from nanoparticles is about 0.5,
and roughly 3 times that from free drug, in 
excellent agreement with the model predictions
of a 2-4 fold increase in kill depending on the

parameter values. From the experimental pro-
tocol, we know that the total amount of drug
released by the particles is F .t≈1.2 . 10-4 g for a
typical mouse weight of 20 g. We then analyzed
the time-course tumor growth and estimated the
approximate (linear) growth rates. For example,
the controls were found to grow at an average
rate of ≈ 70mm3 (proliferation only; no death),
while the tumors in mice treated with
iNPG/pDox 1.0 μm grow at a rate of ≈ 35mm3

(net outcome of proliferation minus death
rates). e latter result produces a net death
rate for the iNPG/pDox 1.0 μm treated tumors
of k ≈ 35mm3 / day, which, since the specific
rate of kill (per molecule of drug) is λk = k /
(Ft), gives, together with Eq. 6, an estimate for
tkill = — . fkill ≈ 4 days (corresponding to fkill ≈ 0.5
and V0 = 130 mm3), in excellent agreement
with the observed time to plateau of the cell kill
reported in the experiments (Fig. 2). 

“In the future, we will add other 
factors or physiological barriers to 
the model in an effort to improve the
accuracy of model predictions.”

Challenges and future directions

We have developed a mathematical model that
accounts for spatial dependence in predicting
tumor response to systemic agents. is model
allows us to consider a variety of treatment
strategies, and helps to predict the tumor 
response to different forms of drug delivery
methods before the start of treatment. Further-
more, we found that the pathological response
to cancer treatment is heterogeneous within a
given tumor and that the local physical proper-
ties of the tumor describe this response. is is
significant in understanding therapeutic resist-
ance, suggesting that the physical microenvi-
ronment naturally selects cancer cells that
reside in areas with poor drug penetration. 
is observation of heterogeneous response 
inspired a concept for improving drug delivery,
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e.g., through the use of nanoparticles that can
accumulate within the tumor, delivering sus-
tained local release of drug to the cancer cells.
In this study, we found that the delivery of sys-
temic chemotherapy using these nanoparticles
would have enhanced cell kill by a factor of 2 
to 4 over the standard therapy that the patients
actually received. However, this strategy may
not be feasible in practice due to the constraint
of tolerable cytotoxicity to healthy cells. Further
investigation into tumor-targeted nanoparticles
may be necessary to realize the results in patients
that our model predicts. 

In the future, we will add other factors or phys-
iological barriers to the model in an effort to
improve the accuracy of model predictions. For
example, tumor cell regrowth or proliferation

that repopulates the killed region, effect of cell
to cell contact, and effect of chemotherapy on
the tumor vasculature can be implemented in
the model. is model may be generalized even
more to account for cancer cell kill by the im-
mune system, accounting for the physical barri-
ers to immune cell infiltration into the cancer.
Moreover, through the use of non-invasive
characterization of transport prior to therapy
using diagnostic CT or MRI imaging, as well 
as the biological characterization of molecular
targets for an individual tumor, one could 
optimize both drug delivery and therapeutic 
selection for a given patient. is biophysical
characterization and prediction strategy would
complement genetically-based, patient-specific
cancer therapy methods by individualizing drug
administration regimens. 

Figure 2. Testing the efficacy of drug-loaded nanoparticles in mice. Comparison of fraction of tumor killed
measured across three different treatment BALB/c mice groups (n=10 per group) over a period of 17 days
(from day 14 to day 31 aer 4T1 tumor cell inoculation) showing a roughly 3-fold increase in kill from
nanoparticle-based drug vs. free drug. At each time point, tumor volume measurements from the three
drug treatment groups were first normalized to the measurement from the control (PBS) group (no drug
treatment), and then to the initial tumor volume for each group; fkill was then calculated as (1 – normalized
tumor volume). Figure reproduced from (Wang et al., PLoS Comput Biol 2016, PMC4902302). 
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Contact information: 

Vittorio Cristini, PhD
UTHealth McGovern Medical School Department of
Nanomedicine and Biomedical Engineering
Center for Advanced Biomedical Imaging (CABI)
building, Room 3SCR6.4644
1881 East Road, Houston, TX 77054, USA
https://med.uth.edu/nbme/faculty/vittorio-cristini/
ISI Highly-Cited Researchers in Mathematics:
http://highlycited.com
Google scholar:
http://scholar.google.com/citations?user=uwl5tw0AAAA
J&hl=en&oi=ao
Tel: +1 713 486 2315
Fax: +1 713 796 9697
Email: Vittorio.Cristini@uth.tmc.edu

Further reading:
http://physics.cancer.gov/
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=6673
http://www.internationalinnovation.com/taking-cancer-
out-of-the-equation/
http://www.pnas.org/content/110/35/14266.long
http://www.jci.org/articles/view/73455
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